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Structure of Two-Dimensional Sandpile. 
I. Height Probabilities 
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The height probabilities of the two-dimensional Abelian sandpile model are the 
fractional numbers of lattice sites having heights 1, 2, 3, 4. A combinatorial 
method for evaluation of these quantities is proposed. The method is based on 
mapping the set of allowed sandpile configurations onto the set of spanning 
trees covering a given lattice. Exact analytical expressions for all probabilities 
are obtained. 

KEY WORDS: Self-organized criticality; sandpiles; spanning trees; height 
probabilities. 

1. I N T R O D U C T I O N  A N D  RESULTS 

The sandpile model proposed by Bak et al. ~l~ has been the subject of active 
research. It has been found to be a prototype of such diverse phenomena 
as earthquakes, ~2~ luminosity of stars, 13~ river flows, 14~ coagulation, tSI 
relaxation phenomena in magnets, t61 and neural networks, tT~ Generally, the 
sandpile model provides a unifying concept for large-scale behavior in 
dissipative systems with many degrees of freedom, and involves essential 
properties of self-organized criticality (SOC). 

The process of formation of a sandpile is formulated in terms of 
heights of the pile and toppling conditions. If the toppling at a lattice site 
depends only on the height at that site, the sandpile model has an Abelian 
group structure and is analytically tractable. Using the Abelian property of 
the model, Dhar  ~8~ has determined the total number of allowed configura- 
tions of the sandpile in the SOC state. Also, the found the correlation 

Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, 141980, 
Russia. 

955 

0022-4715/94/0300-0955507.00/0 ~" 1994 Plenum Publishing Corporation 



956 Priezzhev 

function measuring the expected number of topplings at a given site due 
to a particle added at another one. In spite of apparent progress, the 
analytical description of the model is far from being complete. 

The characterization of the SOC state has two aspects, dynamical and 
structural. The first one implies a description of avalanches, their duration, 
mass, linear extent, perimeter, etc. The structural characteristics of the 
sandpile are fractional numbers of sites having a given height and correla- 
tions between heights at different sites in a typical allowed configuration. 
In this paper, we deal with the structure of the 2D sandpile model. The 
first part of the paper is devoted to a combinatorial treatment and exact 
evaluation of the height probabilities. A short account of some of these 
results has been published previously, c9~ 

The height of a sandpile at any site of a 2D square lattice takes values 
l, 2, 3, 4 in the SOC state. The first numerical estimation of probabilities 
P(1), P(2), P(3), and P(4) was made by Zhang ~ml for a model with con- 
tinuous heights: P(1)=0.10,  P(2)=0.16,  P(3)=0.32,  P(4)=0.42.  The 
corresponding data for the discrete sandpile model on the lattice of linear 
sizes 30, 40 were obtained by Erzan and Sinhalt~l: P ( 1 ) = 0 . 0 7 + 4 % ,  
P ( 2 ) = 0 . 1 7 _ 7 % ,  P(3)=0.31 + 9 % ,  P ( 4 ) = 0 . 4 5 _ 3 % .  Extensive simula- 
tions for the lattice of size 672 were undertaken by Manna, I j21 who found 
P( 1 ) = 0.0736, P(2) = 0.174, P(3 ) = 0.307; P(4) = 0.446, with typical errors 
of the order of 0.003. Grassberger and Manna 1~31 performed simulations 
on some even larger lattices, but not with sufficiently high statistics. 
Their results for the lattice of size 672 are P(1)=0.0736, P(2)=0. I740 ,  
P(3) = 0.3062, P(4) = 0.4462. 

The first exact result for the height probability P(1) was obtained by 
Majumdar and Dhar. ~m They found 

2 4 
P( I ) = n2 - ~ = 0.07363... ( 1 ) 

The problem of finding P(2), P(3), and P(4) turned out more difficult due to 
clusters of growing size giving a contribution to these probabilities. Attempts 
at analytical determination of P(2) showed a very slow convergence of 
cluster series and gave only the lower bound ~j41 

P(2) ~> 0.13t438 (2) 

In this paper, we present a method giving the exact solution of the problem 
in two dimensions. We derive analytical expressions for P(2), P(3), and 
P(4) which read in the limit of an infinitely large lattice 

1 3 2 12 Ii 
P (2}=2  2~ g 2 + ~ 7 + 4  - (3} 
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1 3 1 12 I l 312 
P(3)=4+2-~+n-~  n 3 2 32 (4) 

1 1 4 Q 31, 
P(4) = ~-- ~5 + ~-'5 + + - ~  (5) 

Here I,., v = 1, 2, are integrals: 

I , , -  (2n) 4 
i sin(ill ) det(M,.) 

D(a, ,  fl,) D(a_,, f12) D(a, +a2,  fl, +f12) 
&, d~2 alp, dG 

(6) 

where 

D(ct, fl) = 2 - cos(a) - cos(fl) (7) 

and M~, M_, are matrices, 

M~ 
--- , e ilp~ + lJ'l ei(~,..,-13,_) e-lib 

4 / r r -  1 e a'~l+~''~ 1 e -i~'' ] 

\ 4 / 7 t - -  1 e -"~'I+~'2~ e 2a'2 e TM / 

(8) 

and 

el#: e-i(~tl+~t2)-iIfll+fl2) ei#~ 

M 2 = ~ e  -i~2 I e-i=' I 

\ e i~2 e-2i(~l + ~:,1 emt / 
(9) 

The numerical evaluation of integrals in Eq. (6) leads to P (2 )=  
0.1739 .... P(3)=0.3063 .... P(4)=0.4461 .... in good agreement with the 
high-statistics data. 

The solution is based on mapping the set of allowed sandpile con- 
figurations onto the set of spanning trees covering a given lattice. The local 
characteristics of the sandpile P(i),  i =  2, 3, 4, can be related to nonlocal 
characteristics of trees, namely to probabilities of branches obeying some 
special conditions. To take into account these conditions, we use the 
equivalent formulation of the spanning tree model in the language of 
acyclic arrow configurations. The resulting representation of P(i)  in terms 
of arrow correlation functions permits one to evaluate the height proba- 
bilities by using the modified Kirchhoff theorem. 
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2. GENERAL PROPERTIES OF S A N D P I L E  C O N F I G U R A T I O N S  

We consider a large square lattice L consisting of n sites. The sandpile 
is characterized by integer heights zi at all sites i and is specified by two 
rules: 

(i) Adding a particle at a random site: z i ~ z i +  1. 

(ii) The toppling rule: if any z~ > 4, then zi ~ z~-  4 and zj--* z i +  1, 
[ i - j ]  = 1. 

Particles can leave the system at the edges where the number of 
neighbor sites is less than 4, the number of toppled particles. 

The sand pile model is a cellular automaton. To describe a Markovian 
evolution of the model, it is convenient to introduce I~) operators ag 
( i=  1 ..... n) on the space of stable configurations by requiring aiC be a 
stable configuration obtained by adding a particle at a site i to the 
configuration C and allowing the system to evolve by toppling. It has been 
argued ~81 that operators a~ commute with each other 

[a,, a t]  = 0 (10) 

for all i,j. The steady state of the model is represented by recurrent 
configurations obeying the property 

aT"C=C (11) 

for all i, where mi are positive integers. The properties Eqs. (10) and (11) 
permit one to conclude that the invariant state of the sandpile evolution 
(the SOC state) has a rather simple structure: ( i)only recurrent configura- 
tions have a nonzero probability; (ii)the probabilities of all recurrent 
configurations are equal. 

The total number of stable configurations of the sandpile is 4". Some 
of them are forbidden in the SOC state. Following Dhar, Is~ we define a 
forbidden subconfiguration (FSC) as any subset F c  L of lattice sites if the 
corresponding heights zj, j EF, satisfy the inequalities zj~<coordination 
number of j in F. A configuration that does not contain FSC is called an 
allowed configuration. All recurrent configurations are allowed. ~sl The 
converse statement has been proved in ref. 15. Therefore, we can formulate 
our problem as follows: for a square lattice with given boundary conditions 
it is necessary to find the average fractional numbers of heights 1, 2, 3, 4 
at the set of all allowed configurations. 

Dhar ~sl has proposed a recursive procedure called the burning algo- 
rithm, to determine if a given configuration is allowed. One deletes step by 
step from a given configuration any site j whose height zj is greater than 
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the coordination number  of j in a lattice resulting after a preceding step. 
If in the end the lattice becomes empty, the configuration is allowed. The 
number of stable allowed configurations is given by the remarkably simple 
formula ~8~ 

N =  det A (12) 

where A is an n •  discrete Laplacian matrix with A0.=4 if i=j, Av= --1 
if l i - - j l  = 1, and /10. = 0 otherwise. 

For  a given lattice site io, the set of allowed configurations can be 
divided into four subsets s~, s_,, s3, s4. These are defined as follows. 
A configuration C belongs: to a subset s~ if it remains allowed after all 
substitutions Zo= 1, 2, 3, 4 at io; to subset sz if it remains allowed for 
Zo = 2, 3, 4 and becomes forbidden for Zo = 1; to subset s3 if it remains 
allowed for Zo = 3, 4 and becomes forbidden for Zo = 1, 2. The subset s4 
contains configurations which are allowed only for Zo=4.  All admitted 
substitutions at a given site correspond to equal numbers of configurations. 
Therefore, the height probabilities P(1), P(2), P(3), and P(4) can be 
written in the form 

NI (13) 
e(l)=4--- ~ 

N~ P(2)=P(1)+~ (14) 

N3 P(3)= P(2)+~ (15) 

N4 
P ( 4 ) = P ( 3 ) + - -  (16) 

N 

where Ni is the number of allowed configurations in subsets s;, i = 1, 2, 3, 4. 

3 .  D E S C R I P T I O N  O F  S E T S  s I , s z ,  s 3,  s z  

The description of sl is given in ref. 14. If a configuration C is allowed 
for Zo= 1, it remains allowed after substitutions Zo=2,  3,4. Due to 
Eq. (13), N~ is equal to the number of allowed configurations with Zo= 1 
multiplied by 4. .Let  us fix Zo = 1. For  every allowed configuration, there 
exists a burning procedure bl,  b2, b3,.., which burns the site io after all its 
nearest neighbors j~, J2, J3, J4. Therefore, the number of allowed con- 
figurations with z o = 1 does not depend on the existence of the site io and 
one can delete it from the lattice L together with adjacent bonds. Alter- 
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natively, one may remove three bonds, say ioja, ioJ3, ioj4 from L, reducing 
simultaneously diagonal elements A .̀0,. 0 by 3 and Aj2j2, Aj~j~, and Aj, j, by 1. 
Each allowed configuration on the new lattice L'  with the new matrix A' 
corresponds to an allowed configuration on L with Zo = 1. Applying the 
determinant formula (12) to the lattice L', we get 

Nl = 4 det A' (17) 

Let us now look at Eqs. (12) and (17) from a different point of view. First, 
we recall some definitions of graph theory. A subgraph G of the graph L 
is a subset of vertices and bonds of L such that it forms a graph. Denote 
by v(G), II(G), and x(G) the numbers of vertices, connected parts, and 
internal loops of G, respectively. A subgraph T is a spanning tree of L if 
v(T) = v(L), / I (T)=  1, and ~:(T)= 0. The coordination number deg(i) of a 
site of a tree is the number of edges" meeting at that site. 

To simplify the consideration, we specify the boundary conditions as 
follows: A`.; = 3 if i belongs to the edge of L, .4,.; = 2 if i belongs to one of 
three corners, and .4 .̀̀ . = 3 if i coincides with the fourth corner denoted by ~r. 

According to the Kirchhoff theorem, t161 det.4 is the number of 
spanning trees of the lattice L. By construction, det .4' is the number of 
spanning trees T' satisfying the following conditions: 

(a) Each T '  contains the bond ioji.  

(b) The coordination number deg(io) = I, io e T'. 

Using the symmetry of the lattice in the thermodynamic limit, we get 
the following rule for determination N~: N~ is the number of spanning trees 
of the lattice L having deg(io)= 1. 

Finally, we introduce the ordering of the lattice with respect to the 
root ~r. We shall say that a site i is the predecessor of a site j if the unique 
path to the root ~r along the tree from i goes throughj.  For the trees 
conUfbuting to N, there are no predecessors of io among neighbor sites 
Jl, J2, J3, J4. So we obtain the third definition of N,: 

Nj =Xo  (18) 

where Xo is the number of spanning trees for which sites j~, j_,, J3, J4 are 
not predecessors of io (Fig. 1). 

Let us turn to the description of s2. By definition, the substitution 
Zo = 1 converts an arbitrary configuration C e s2 into a forbidden one C'. 
This means that a FSC appears which contains the site io with Zo = 1, one 
of the sites Jr, J2, J3, J4, say j j ,  with Zi, t> 1, and some k connected sites 
(k/>0) including none of the sites j : ,  J3, j4. (If one of J2, J3, J4 also 
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O 
J2 

J3 () 

i0 J4 
) O 

Fig. 1. Diagram representation of s~. Open circles are the sites which are not predecessors 
of io. 

belongs to the FSC, then the configuration C' remains forbidden after the 
substitution Zo = 2.) 

Let S(C) be the FSC resulting from the substitution Zo = 1 in C. We 
construct a lattice L' in the following way. We delete the boundary bonds 
connecting the sites of S(C) to the rest of the lattice L with the exception 
of the only bond connecting the site io with one of the sites J2, J3, J4 (J2 
for definiteness). For each bond deleted, we also decrease the maximum 
height allowed at the two end sites of the bond by 1. In this way, we obtain 
a new toppling rule matrix A'(S) which depends on the form of a given 
FSC. As above, for each allowed configuration C with Zo= 2 a burning 
procedure exists which does not depend on the presence of deleted bonds. 
Therefore, the set of all allowed configurations on the lattice L' is in one- 
to-one correspondence to the set of configurations C e s2 which generates S 
by the substitution Zo = 1. As the sites j~, J2, J3, J4 are equivalent and three 
possibilities Zo = 2, 3, 4 contribute to s2, the number of allowed configura- 
tions in s2 is 

N2 = 12 ~ det d'(S) (19) 
S 

where the sum runs over all possible FSCs containing the sites io, j j  and 
none of the sites-j2, J3, J4. Using the Kirchhoff theorem, we conclude that 
the sum in Eq. (19) is the number of spanning trees T'  satisfying the 
following conditions: 

(a) Each T '  contains bonds jl io and ioj2. 
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(b) Deletion of the bond ioj2 divides T' into two subtrees T~ and 7"2 
such that the sites i o and j~ belong to T~ and the sites ,k, J2, J3,  

J4 belong to/ '2 .  

(c) The bonds ioj 3 and ioj4 are always absent among the bonds 
of T'. 

The rules (a)-(c) imply that the site Jl is the nearest predecessor of io; all 
other sites of S(C) are also predecessors of io; none of the sites J2, J3, J4 
are predecessors of io (Fig. 2). Summarizing, we can formulate the new rule 
for the determination of N2: 

N2 -~ XI (20) 

where Xl is the number of all spanning trees for which the site io has only 
one predecessor among its nearest neighbor sites. 

The description of s3 is quite similar to that of s2. The substitution 
zo = 2 produces FSCs which contain the site i o with Zo = 2, two nearest 
neighbor sites, and some k sites (k ~> 0) belonging to them. In contrast with 
the previous case, one of the neighbor sites belonging to FSC is not 
necessarily a nearest predecessor of io and may be connected with io via an 
arbitrary long sequence of bonds along a tree (Fig. 3b). Omitting the 
construction of new toppling matrices, we can write 

N 3 = X ( ' )  + X (2) + X~ 3) (21) 

where "2v(i), i = 1, 2, 3, are the numbers of spanning trees for which positions 
of two predecessors with respect to io are shown in Fig. 3a-3c. 

0 
J2 

J3 
() 

io 

() 0 
J4 

Fig. 2. Diagram representation of s 2. The arrow at the closed circle indicates that j t  is the 
nearest predecessor of io. 
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(a) (b) (c) 

Fig. 3. Diagram representation of s~. The left closed circle in case (b) denotes a predecessor 
of i 0. The rest of the closed circles provided with arrows are nearest predecessors ofi o. 

The  descr ip t ion  of  s4 is clear f rom Fig. 4. The  site io is s u r r o u n d e d  by 
three predecessors.  In  add i t i on  to the previous  cases we mus t  d is t inguish  
two possibil i t ies for a predecessor  to be connec ted  with the nearest  
predecessor  (Figs. 4b a n d 4 d ) .  C o u n t i n g  six conf igura t ions  of ne ighbors  
a r o u n d  io, we have 

N 4 = X'3~I) + X3~21 + . . .  + X'3 t6) (22) 

where X3 t;~, i =  1 ..... 6, is the n u m b e r  of s p a n n i n g  trees obey ing  the given 
condi t ion .  

"" . . ,  . . . . . . . . . .  . - " '  

(a) (b) (c) 

+-+-+ 
�9 (d) (e) (f) 

Fig. 4. Diagram representation of s4. Broken lines denote different paths along a tree 
connecting predecessors with nearest predecessors. The position of the sites j~, J2, J3, J4 with 
respect to i 0 coincide with those in Fig. 1. 
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4. A R R O W  C O N F I G U R A T I O N S  

It is convenient to introduce a different description of a tree confi- 
guration. Let each lattice site i except * contain an arrow which can be 
directed from i to one of its nearest neighbors i'. We say that an arrow 
generates a path i i '  from i to i'. A collection of paths of the form 
i l i 2 ,  i2i3,.. . ,  i3,... , i k _ t i  k is a path i l i  k from i~ to i k.  If the site i k coincides 
with il, the path i~ i k is closed. If a configuration of arrows generates no 
closed paths, it is an acyclic one. 

The acyclic configurations are in one-to-one correspondence to the 
spanning trees of  a given lattice. Indeed, let us ascribe to each vertex i of 
the tree an arrow directed from i to the nearest neighbor i '  for which a 
distance (the number  of connected bonds) between i '  and ,k is minimal. We 
get a configuration of arrows which generates no closed paths. Conversely, 
consider an arrow configuration. The absence of closed paths implies 
that each generated path ends at the site ~r. Then a collection of bonds 
belonging to all paths forms a spanning tree having the root ~. 

The diagram representation allows one to redefine the sets Sl, s2, s3, 
s4 in the arrow language. A part of neighbor sites of io in Figs. 1~, is 
already marked by arrows. The arrows at unmarked sites Jl ,  J2, J3, J4 may 
be directed anywhere, but not to i o. An arrow at i 0 may be directed to any 
open circle. Enumerat ion of arrow configurations with fixed positions of 
arrows at given sites can be easily performed by using the Kirchhoff 
theorem. To this end, it is enough to replace by zero the matrix elements 
`4o corresponding to forbidden directions of arrows and to evaluate the 
determinant of the resulting matrix d ' .  For  example, 

X o = det `4' (23) 

where ,4' differs from d by elements `4.'j,~o=3~,~o=,4~3~o=,4~4io=0 and 
,4~, J, = ,4.~2 J: = A~,./~ = `4 j ,  j ,  = 3. 

Evaluation of det `4' is straightforward due to the formula 

det ,4' 
det---~ = det( l  + G 6 )  (24) 

where 6 = A ' - - ,4  and the matrix G = , 4 - J  is the two-dimensional lattice 
Green function given by 

1 f ' - - f  
G(r' r ) -  G(r' r ' )  = 2(2~)2 Jo J 

1 -- COS[(X -- x')~x] c o s [ ( y  -- y ' ) f l ]  
&dfl 

2 - c o s ( a )  - c o s ( / ~ )  
(25) 
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Hereafter, we shall use also the notat ion 

gk, l=G(r,r'); r=(x,y), r '=(x+k,y+l)  (26) 

to display the dependence on relative two-dimensional coordinates. 
Crossing out those rows and columns of 6 containing only zero 

elements, and using tabulated values of the Green functions, t~7~ we obtain 

Xo 8 16 
N 7z 2 7z 3 (27) 

Due to Eqs. (13) and (18) one gets 

2 4 
P ( 1 ) = n 2  n3 (28) 

This is the value obtained by Majumdar  and Dhar. 114~ Evaluation of 
diagrams responsible for P(2), P(3), and P(4) goes beyond the validity of 
the Kirchhoff theorem. Indeed, the diagrams in Fig. 2-4 involve a nonlocal 
condition for a given site not to be a predecessor of another. Therefore, we 
cannot  simply fix positions of a finite number  of arrows to reproduce a 
situation around io. We can try, however, to find several relations between 
nonlocal diagrams using only local conditions. Two of them are shown in 
Fig. 5. 

Numbers  R~ and R 2, like )to, are determinants of perturbed matrices 
zJ'. In the case of R~, the matrix zl' contains zero elements .41.~;o = zl~4i,, = 0 

0 ...... " - "  - .~  0 + 
R~ X,/ 12 X~e'~/ 16 X:~78 

t + ........ o 6 ....... : + o + 

X2 /8 ~C,'/4 R; X, / 12 ~2~ 

Fig. 5. Correspondence between local arrow configurations Ra, R2 and diagrams involving 
nonlocal conditions. The dotted lines mark three possible positions of an arrow at a given site. 
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corresponding to forbidden directions of arrows at J3 and J4. Besides, the 
elements connecting the sites i o and Jl with their nearest neighbors equal 
zero except A},~o=A~oj,.= - 1 .  In the case of R_, the forbidden and allowed 
directions are defined by d~.2,. 0 = d~,~ 0 = 0 and zl~ ~0 = A~o.i ~ = --1, respectively. 
Each diagonal element A;~ in both cases is equal to the number  of allowed 
directions of arrows at the site i. Evaluating the determinants  of these 
matrices, we have 

Ri 1 5 4 
N 2rt 2r~2 t-~- 5 (29) 

R 2 1 4 4 ~-~+ (30) 
N n 

We can also notice equivalence of the two diagrams in Figs. 4e and 4f. Let 
us reverse directions of all arrows on each path from J2 to Jl in Fig. 4f. 
Simultaneously, we replace the arrow at Jt pointing to io by one at J2. As 
a result, we get the configuration shown in Fig. 4e. Taking into account  the 
symmetry  of the diagram of Fig. 4f, we obtain 

1 y ( 5 1  _ ~'" 3 - X3 ~6) (31) 

Using Eqs. (29) and (30) and the relationships between RI ,  R2 and X~, X_,, 
X3 shown in Fig. 5, we find X~ 21 in the form 

X~ -'~ 8 4 12 
N = ~ ( R , . - R I ) - 1 t  rt 2 (32) 

The diagram in Fig. 3b is the only nonlocal d iagram which can be 
evaluated by a direct application of the Kirchhoff  theorem. The rest of the 
diagrams need a more elaborate technique. It follows from Eqs. (20) and 
(21) that it is sufficient to find Xi,  X~ i), X~ 3~ besides X~ '-I to determine 
P(2), P(3), P(4). Let us try to formulate the above-ment ioned nonlocal 
conditions using the arrow notation. 

We start with the d iagram in Fig. 2. There are three equivalent 
possibilities to direct the arrow at io to sites J2, J3, J4' Let us choose j , .  
Then the condition for the site .J2 not to be the predecessor of io is fulfilled 
automatical ly due to the acyclic proper ty  of arrow configurations. To  take 
into account  the analogous condition for the site J4, we put one more 
arrow at io directed to J4 and demand that the new configuration of arrows 
on the lattice should also be acyclic, i.e., it does not generate any closed 
path. If the sites J2 and J4 are not predecessors of io, the site J3 also is not 
the predecessor, because in two dimensions any path from J3 to ~" is 
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J3 j ,  J3 

j @  @ J 4  J @ 4 4 " - "  " " J 2 . . . .  " 

J I  " 1  JI 

(a) (b) (c) 

Fig. 6. Acyclic configurations corresponding to (a) X t , (b) X~ l ~, (c) X~ ~l. 

enclosed between two paths j2"~" and j4~r. In a similar way, we put two 
arrows at io directed to open circles in Figs. 3a and 3c, ensuring the 
condition for the sites j3, J4 and j~, J3 not to be predecessors of io. The 
resulting combinations of arrows are shown in Fig. 6. 

The new acyclic configurations containing a site with two arrows at io 
no longer represent spanning trees, because they involve a loop created by 
two paths starting at io and ending at ~. 

5. C O M B I N A T O R I A L  C O N T E N T  OF K I R C H H O F F  T H E O R E M  

Our aim in this section is to construct an analog of the Kirchhoff 
theorem which would be suitable for enumeration of acyclic arrow 
configurations containing two arrows at a selected site. To introduce the 
necessary improvements, we shall consider the combinatorial content of 
this theorem. 

For a given connected graph G consisting of n sites, let zl a be an n x n 
matrix with elements Aa( i ,  j), i, j e  G: 

f )'i if i = j 

A ~ ( i , j ) = ] - - x  o. if sites i and j are connected by bond (33) 

(o otherwise 

Let {x} and {y} denote the sets of weights of all bonds and all sites, 
respectively. It is easy to show ll8'19) that the function 

g({x}, { y } ) = d e t  Aa (34) 

is the generating function of all possible configurations of closed paths 
weighted in such a way that each bond passed in the direction from i to j 
gives the weight xij. Each path brings also a minus sign. The paths have no 
self-intersections and any two paths have no common lattice site. A site i 
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not belonging to any path has the weight Yi. For the sake of generality the 
weights x 0 and xji will be considered not necessarily equal. If one of them, 
say .~cji, is equal to zero, paths passing the bond ~ in the direction from j 
to i give no contribution to the generating function. 

The identity (34) follows from the expansion of the determinant into 
cyclic permutations and underlies practically the solutions of lattice 
problems belonging to the free-fermion class such as the Ising model and 
the dimer problem (see ref. 19 for details). Making use Eq. (34), we can 
prove the Kirchhoff theorem by means of the well-known combinatorial 
inclusion-exclusion principle. 

Let there be No elements and a certain number of properties p(1), 
p(2) ..... p(n). Let, further, N~ be the number of elements with property p(i), 
and generally let Ni,,i:....,it be the number of elements with properties p(il), 
p(i2) ..... p(ir). Then the number of elements N not possessing any of these 
properties is given by the equation 

N = N o - ~  N,+ ~ N,,.,, . . . .  2 V ( - - 1 )  r 

i i l  < i 2  

• E g i m . i 2 . . . . . i + ( - - 1 ) " N l ,  2 ....... (35) 
i 1 < i 2 <  , . .  <i  r 

We chose an arbitrary site of G as the root, denoting it by ,k. Further- 
more, we put y i=deg( i )  for all iEG except * ,  for which y , =  1. In addi- 
tion, we put x o = 1 for all i, j connected by bonds, except i =  -k, for which 
x , / = 0 .  Let us consider the function g({x}, {y}) term by term as the sum 
over all sets of closed paths. The first term arises when the set is empty and 
equals 

[-I deg(i) 
i ~ -  

This term corresponds to a free arrangement of arrows at each of n 
sites of the graph except -A-. We shall identify this term with No in Eq. (35). 
The properties p(1 ), p(2) ..... will be assumed to be closed paths enumerated 
in an arbitrary order. Then, the second term in Eq. (35) corresponds to the 
sum over all possible closed paths avoiding -k and taken with a minus sign. 
Continuing these arguments, we obtain a full correspondence between the 
function g({x}, {.v}) and the right-hand side of Eq.(35) finding the 
number of all acyclic arrow configurations or, equivalently, the number of 
all spanning trees of the graph G. 

It should be noted that the elimination of the root plays the same role 
as evaluating a minor instead of the determinant in the original formula- 
tion of the Kirchhoff theorem. 1t6) An alternative way of taking into account 
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the absence of arrows at the root is to put y ,  = deg('k) + 1 and x , j  = 1 for 
all j connected with the root by bonds. Indeed, i f x ,  j =  1, then g({x}, {y}) 
is the generating function of all possible configurations of closed paths, 
including those passing via the root. There are deg(.A-) possibilities to 
arrange an arrow at the root. Each of them creates a closed path starting 
and ending at the root due to lack of another endpoints. Having opposite 
signs, these new configurations will be canceled. Therefore, the only possi- 
bility of absence of arrows corresponding to the unity in the expression 
y ,  = deg(~r) + 1 gives a contribution to the final result. 

In the case under consideration the graph G is the square lattice with 
deg(i)=4.  In some cases we shall need also to consider lattices with 
additional links or forbidden directions of arrows. All these cases can be 
treated uniformly by putting xii-- l for allowed directions and x, 7-- 0 for 
forbidden ones. Generally, putting 

yi=ZXij; i S * ;  y , = l ;  x , j = 0  
J 

one obtains the generating function of all acyclic arrow configurations with 
the weights xij ascribed to the arrows pointing from i to j. 

If a given site contains two fixed arrows, using the inclusion-exclusion 
principle becomes more complicated. In contrast with the standard acyclic 
situation, configurations of arrows may appear which generate two closed 
paths having common sites. In Fig. 7 these are a path P~ of the type 
ioJ2...j~io and a path P2 of the type ioJ4...j~io having common sites 
along the path from i~ to io. Because of the acyclic condition, we should 

J 
0 

j~ [ i o  j~ _ _  

a i, c 

Fig. 7. The configurations of arrows responsible for the O-graph. The wavy lines denote all 
possible paths through the lattice. 

822/74/5-6-2 
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provide cancellation both of P, and P, .  Then, as configurations containing 
P~ and P2 simultaneously will be excluded twice, we must, according to the 
inclusion-exclusion principle, return these into the expansion. But the 
generating function (34) contains only closed nonintersecting paths and we 
lose the correspondence between Eq. (34) and the expansion (35). To 
restore this correspondence, we should introduce into the generating 
function the configurations of arrows forming closed paths of the types P. 
and P_, simultaneously. 

6. H E I G H T  P R O B A B I L I T I E S  

In this section, we realize the program outlined in the last two 
sections. We shall consider evaluation of P(2) in more detail, as it involves 
all the main steps of the general solution. 

We shall denote the configuration of arrows at io, J , ,  J2, J3, J4 corre- 
sponding to X~ by C,. The first step is cancellation of the closed paths of 
type Pc (Fig. 7) passing via bonds ioJ2 and j~ io. We introduce the matrix 
Ate)= A + 6tl~ in such a way that positions of arrows on these bonds would 
be fixed. The following matrix elements [i, j ]  of A I'~ equal zero: [io, J'], 
where j '  is any neighbor site of io except J2; [J,,J"], where j "  is any n.n. 
site of j~ except io and also elements [J3, io] and [J4, io]. As above, we 
reduce also the corresponding diagonal elements putting [io, io] = 
[ j j , j , ] = l  and [ja,Js]=[j4,J4]=3. According to the Kirchhoff 
theorem, det A~'~ enumerates all possible configurations of arrows contain- 
ing the subconfiguration C~ except the arrow directed from io to J4 and 
generating no closed paths including P~. Substitution of the matrix A t'~ 
into Eq. (24) gives 

det A ~1~ 1 5 4 
det A 2n 2n 2 t-n3 (36) 

An expansion of det A c~ into cyclic permutations forms a basis for the 
inclusion-exclusion series enumerating acyclic configurations containing C~. 

The next step is the introduction of loops canceling P2 into the series. 
We define the matrix d(2~= A + 60-~, with the matrix 6(,~ converting to zero 
the following elements of A~2~: [-i0, J ' ] ,  where j '  is any n.n. of io except J4; 
elements [J2, i0] and [J3, i0]. In addition, the matrix element [Jl ,  i0] 
becomes - e  and diagonal elements become [j_,, j 2 ] =  [Js,J3] = 3  and 
[i0, i0] = 1. Then the expression lim[det A~2~/8] as 8 ~  oo gives all con- 
figurations of arrows containing C~ except the arrow directed from io to J2 
and generating precisely one closed path of the type P2 weighted with 
minus sign. 
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Although evaluation of det A ~-~) is straightforward, the explicit form of 
matrices G(r, r') and 612 ~ is worthy of notice. Taking rows and columns of 
these matrices in the natural order io, j~, J2, J3 ..... we can write the nonzero 
parts of the symmetric matrix G as 

go - , ) �9 go .o - -  �88 go, o �88 g o . o - -  

go.o go.o -- 1/rt go.o -- 1 + 2/n 

. . . . . .  go, o go, o -  l/rt 

. . . . . .  go.o 

(37) 

and the matrix 6~2 ~ as 

- 0 0 

0 - 1  

0 O -  

(38) 

The matrix 6t,_~ contains the nondiagonal element - e ,  which tends to 
infinity at the close of evaluations. Because of this, any finite value of the 
diagonal element [J l , J~]  is irrelevant and we keep it unchanged�9 By the 
same reasoning, the Green function go�9 is no longer canceled in a matrix 
product G612 I. 

Equation (24) with A ~2~ leads to the expression 

lim detAC2) 1 - 4 g o . o (  1 1 )  
. . . .  e det A 47~" ~ ~ (39) 

The Green function go.o depends on the lattice size n and diverges as 
log(n) for large n. Therefore it must be canceled in further calculations. 

The sum 

det A ~2) 
S = d e t  AI~)+ lim (40) 

is a part of the inclusion--exclusion series which enumerates arrow 
configurations containing C,, generates neither PI nor P2 separately, and, 
possibly, generates a combination of P~ and P_, having the form of a 
O-graph. Each O-graph being excluded twice brings a minus sign. 

The last step consists in enumeration of arrow configurations generat- 
ing O-graphs. A O-graph is a subgraph of L containing sites of two types: 
sites j with deg(j) = 2 and two sites io and il with deg(io) = deg(i~) = 3. For 
the O-graph in Fig. 7 the site io is surrounded by three sites Jr, J2, j4 and 
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the site i~ by the sites a, b, c. The second group of sites may be oriented 
arbitrarily with respect to the first one. 

We can try to construct a O-graph as follows. For fixed positions of 
the point i, and its neighbors a, b, c we should define a generating function 
of arrow configurations which generates three paths n~, rc 2, ~t 3 starting at 
sites a, b, c and ending at sites j_,, Jo, J4- The combination of paths hi ,  n2, 
n3 is equivalent to a O-graph with inverted arrows on the bonds belonging 
to two of them, n~ and lz 3. A generating function of the (34) generates only 
closed paths having no endpoints. To overcome this difficulty, we add to 
the original square lattice L three "bridges," additional bonds connecting 
the sites a and j,_; c and J4; b and io. Accordingly, we introduce the matrix 
/ I ( 3 ) = A  =I-6 (3) with a perturbed matrix 6 (3) such that three new nonzero 
elements of .4 (3) appear: ['J2, "a] = I-j4, C] = [io, b] = -e .  As above, 
[J3 ,  io]  = 0  and [ J 3 , J 3 ]  =3.  Also, 6 (3) converts to zero the elements 
[i),j'], where j '  is any n.n. site of i~ except b and reduces by 3 the 
diagonal element [i~, i~]. Then, applying the formula (34) to the new 
lattice L', we find that the expression lim[det .4(3)/83] as  ~ ~ ~ gives all 
possible configurations of arrows on L'  generating either three closed paths 
of the type j2a'"j2,  iob...j)io, j4c...j4 or a single path of type j2a... 
j liob.. .j4c.. . j2 or of the type j2a.. . j4c.. . j l iob.. . j2.  In both cases the 
arrows of closed paths belonging to the lattice L form the paths it t, rt2, rt 3 
and, therefore, the desirable O-graph (with minus sign). Summation over 
all possible positions of the site i~ and its three nearest neighbors gives the 
necessary improvement of the inclusion-exclusion expansion. 

It is important to note that introducing the bridges imposes a purely 
topological character on our problem. To control the sign of the contribu- 
tion coming from the O-graph, we must assure ourselves that the each path 
representation has a fixed parity. Generally, one, two, or three closed paths 
passing via three bridges are possible. But in our specific situation, only 
odd numbers of paths exist when the points io, j_~, and J4 are neighbor sites 
as well as the points a, b, c and, in addition, the direction from the point 
J3 to  i o is forbidden. This is not the case for three-dimensional lattices and, 
therefore, our solution is restricted to planar lattices. 

To reduce the technical problems arising from summation over all 
possible positions and mutual orientations of points i~, a, b, c we introduce 
two different matrices .4i(L) and .4;(F) instead of .4(3), where the index i 
denotes the position of the point i, = (k, 1), and letters L and F reflect the 
positions of two neighbor sites a and b with respect to i) (Figs. 8a and 8b). 
The connection point of three lines in a O-graph on the square lattice has 
everywhere the form of the letter T. So, the letters L and F and their 
horizontal reflections can be embedded into the O-graph twice. Due to 
the left-right symmetry, the simple summation over i) is equivalent now to 
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Fig. 8. 

J3 
o 

;. i0 J' 

g ii 

J3 
o 

J2 i0 J, 

(a) (b) 

Sites and bonds contributing to the definitions of the perturbed matrices (a) A,(L) 
and (b) A~(F). The broken lines mark the positions of bridges. 

the summation of det A 131 over it and all orientations of its neighbors. The 
matrices Ai(L)  and Ai(F ) differ f rom/t  by the elements [io, i~] = [j_,, a]  = 
[A,  b] = - e  and by the elements [ J 3 ,  io] = 0 and [ J 3 ,  J 3 ]  = 3. 

The explicit form of the determinants for a given point i~ = (k, 1) 
follows directly from Eq. (24): 

lim l~de tLJ / , (L)  detzl,,(F)~ 
~ . ~  ( cl~-A + c l~A j = d e t g L - d e t g r  (41) 

where M r  and M c  are the matrices 

g,.o--go.o gkJ gk+,. ,  gk. , -I  i )  
go.o-gl ,o  - 1  g k J -  J gk + l.t- I gk.l-  Z 

gt.I - -  gl.o gk- I . t  gk.t g k -  t.l 

gn.u--gl.o gk+J.t gk+".t gk+ U.t 

(42) 

and 

gl.o -- go, o gk, I gk + 1.1 gk, l+ J 

go.o--gl.o - 1  g k j - t  gk+l.t 1 gk.l | 
I 

g l . t - g J . o  g k - , . t  g,~-J g k - l . t + t ]  
I 

g l . l - - g l . o  gk+l.I gk+ZJ g k + t . l + t /  

(43) 
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Now we are going to take the sum of Eq. (41) over all it e L. In doing 
this we meet several problems. 

First, we must take into account  situations where the site i, is a 
nearest neighbor of i o or  coincides with it. If either io = i, ,  J2 = a, or  J4 = b, 
we set the corresponding diagonal elements of the matrices d i (L )  and 
,di(F ) to - e :  [io, io] = - e ,  I-j_,, J2] = - e ,  or [J4, J4] = - e .  The emergence 
of an infinitely large element of the diagonal when e ~ oo implies simply 
exclusion of the given point out of the graph. Equivalently, we can consider 
this element as an elementary closed loop starting and ending immediately 
at a given point and bringing the minus sign. 

Second, if the sites io and i, are nearest neighbors or coincide, it is not 
always easy to recognize a O-graph in the path representation. To  this end, 
we show in Fig. 9 all these cases for the matrix zJi(L ) providing them with 
examples of O-graphs. It is notable that the number  of closed paths 
remains odd everywhere: one closed path in the cases of Figs. 9a, 9b, 9d, 
and 9e, and three paths, including an elementary loop, in the cases of 
Figs. 9c and 9f. So, all these nonstandard  situations give O-graphs with 
correct sign. The matrix .di(F) has similar properties. 

Third, some of the arrangements  of the site i, are forbidden, that is, 
no O-graphs correspond to them. For  the matrix A~(L) the forbidden 
positions of i, are io and J2, for the matrix ,J~(F) these are j_,, io, J3" The 
first pair is shown in Fig 10a and 10b. The definition of the perturbed 
matrices in these cases does not differ from the preceding cases and we 
must subtract  them simply from the sum over i~ e L. 

b 

(a) 

b 

b 

" I i 

b j ,  ,;: / j  ' 

(d) 

j b i .....,, j i,, 

""'""....',.""/' (e) 

J :  i,, b j ,  

" ~ ' i  = >  

(0 

i0 

Fig. 9. The configurations of paths generated by the matrix Ai,(L) when (a) it=j3; 
(b) i I =J4; (c) a=j2; (d) b=j,; (e) b=io; (f) b=j4. 
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b "'"""'"'""'"'"~i ''~'''''''%" 

(a) 

. io +b 

b,j ,  

j,",,., l l i ,  ii  ,,,/ a, j ,  

(b) 

L o ,  

=> i ~ > 

Fig. 10. The configurations of paths corresponding to forbidden arrangements of the site i~: 
(a) i~ =J2 ;  (b) i~ = i0; (c) Sites and bonds contributing to the definition of the matrix A(T}. 

Finally, it can be seen from Fig. 9 that each O-graph either is counted 
once as well as its horizontally symmetrical counterpart or is counted 
twice, whereas its counterpart has no representation by Ai(L) or AAF). 
The only exception is the case A~(L) for il =J4 or, equivalently, Aj4 shown 
in Fig. 9b. Its counterpart has no representation and therefore we must 
take it twice. Similarly, we must take twice a contribution from Aj4(F ). 
Furthermore, the O-graph shown in Fig. 10c, right, has no representation 
either by Ai(L) or by Ai(F). Thus, we define the last perturbed matrix, 
denoting it by A(T), with the elements [io, J4] = [J2, a]  = [./4, b] = - e  
and [J3, io] = 0, [J3, Js] = 3, where the new positions of points a and b are 
shown in Fig. 10c. 

Gathering all these corrections, we may write the expression for the 
number of configurations generating a O-graph: 

N ( O ) =  - lim ~ de tA~, (L)+~.de tAi , (F) -de tAj , (L) -de t3~o(L)  

- det Aj2(F) - det A~o(F ) - det •j,(F) + det Aj,(L) 

+ det Aj,(F)+ 2 det A(T)} (44) 

In order to evaluate two sums over il, notice that matrices (39) and 
(40) coincide except for the last columns. Combining them, we get 
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- d e t M L + d e t M  r 

-.-I 

1 1 - - - f i sin(f i t)  det(M't ) e ;kr + "'~e "q~' +o,I 
� 9  d ~ 2  

(45) 

where the matrix M~ is given by Eq. (8) with substitutions cq = cc~ + c~ 2 and 
f13 = fit + f12, and the matrix M'~ has the form 

M'l = 4 / ~ -  1 go,o 1 e-i~' I (46) 

\ 4 / r e -  1 go,o e 2;'2 e ;~ / 

Surprisingly, the second integral in Eq. (45) equals zero and thus no 
contribution to the coefficient of go.o comes from two first terms of 
Eq. (44). The first integral gives I~ in Eq. (6) after replacing the order of 
summation and integration and subsequent integration over ~3, f13. 

The remaining terms in Eq. (44) can be easily obtained using tabulated 
data for the Green functions g,.o, gl.~, gzo,  g2.J. For example, the 
nonzero part of the matrix , 4 ( T ) - A  is ( oo 

0 0 0 - ~  

0 - 1  0 0 

0 0 0 O -  

(47) 

and the corresponding part of the matrix G is 

/go, o gl.o gt.o 

gt,o go.o gt,l 

gl,o gt,l go.o 

gl,o g2.o gt,J 

gl,l g2 .1  gzl 

gl,l g2 .1  gl.o 

gl.o \ 

g2.o 

gl,I 

g o , o  

gl,o 

gl.o 

(~) 
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where rows and columns are in the following order: io, J2, J3, J4, a, b. 
Substituting the product of these matrices in Eq. (24), we obtain 

det A (T) 3 1 1 3 4 
lim - -  - - -  . . . .  e det A 64 4x 4rt2 I.- 71.3 ~4 

( 3 1 3 9 8 )  
- - ~ -  ( 4 9 )  + go, o ~-t 4x re- ~-3 

The combined value of all remaining terms is 

8 8rc+~5~ -'+4g~176 2~- ~-5 (50) 

The coefficient of go, o is a crucial check of our calculations. Closed 
loops giving go, o in Eq. (39) and O-graphs giving it in Eq. (50) have 
different geometrical structures. The resulting cancellation testifies to the 
correctness of the operation of the inclusion-exclusion principle in our 
problem. 

The final expression for the number of configurations generating a 
O-graph is 

N(0) I, 1 7 5  ( 1  1 )  
U =-(g+-8--~+-~ 2+4g~176 ~ ~ (51) 

Combining Eqs. (36), (39), and (51) and using the symmetry of diagrams 
in Fig. 2 and Fig. 6a, we get 

X,=12[detzl ' t )+~l im_ ~_ --detd(2)+N(O)]~ (52) 

Substitution of Eqs. (52) and (28) into Eq. (14) gives Eq. (3) quoted in the 
Introduction. 

To find P(3) [and therefore P(4)], it is necessary to determine X~ ~) 
and X~ 3). The procedure is quite similar to the one described above. 
Evaluating related determinants and summing over all possible configura- 
tions of O-graphs, we obtain 

X~ [11 8 28 32 12 
- = 1 - - - t - ~ 2  rt3 It N x 8 

and 

(53) 

X~ 3) 3 6 2 16 II 12 
) - -§  (54) /[.2 /t.3 N 2 x 2 16 

These equations together with Eq. (32), give due to Eqs. (21) and (15), the 
final results for P(3) and P(4). 
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7. D I S C U S S I O N  

In this paper we have determined the height probabilities in the 
Abelian sandpile model of SOC on the square lattice. The method used 
here can be easily extended to other two-dimensional lattices, al though the 
three-dimensional problem seems much more difficult. 

The presented solution has some peculiarities in comparison with the 
known methods used for 2D lattice models of statistical mechanics. Exactly 
solved models can be divided conventionally into two classes. The first is 
the class of free-fermion models, ~2~ solutions of which usually have the 
form of a determinant or a Pfaffian. The second may be termed the class 
of interacting fermions and involves the Bethe-ansatz technique or the 
method of commuting transfer matrices. ~2'1 In the first case, fermion 
variables in the space representation are free and in the second, fermions 
interact uniformly at each lattice site. The Abelian sandpile model takes an 
intermediate place between these cases. On  one hand, the problem of 
enumerating all possible sandpile configurations in the SOC state is purely 
a free-fermion one. The generating function (34) underlying the solution 
can be represented as a product  over independent closed paths (fermion 
trajectories) weighted with the minus sign. On  the other hand, evaluating 
the height probabilities at a given lattice site leads to a problem containing 
an effective interaction between "fermions" at that site. In order to take 
into account  this interaction, we have to introduce the O-graphs into con- 
sideration, which are an analog of loop diagrams in quantum field theory. 
The complexity of the diagrams depends on the order of the height-height 
correlation function. Thus, the Abelian sandpile is the source of a new class 
of lattice models which are characterized by a nontrivial space-dependent 
interaction. 
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